
Fridge Fairy 

 
 
FridgeFairy is a website dedicated to discovering recipes based on input ingredients. The user 
inputs the ingredients that they would like to use and the FridgeFairy searches over 1,000 
recipes to find matches. FridgeFairy uses Elas?cSearch to store recipes. Elas?cSearch is an API 
that takes in a large amount of data in the form of JSON and allows that data to be queried in a 
dynamic manner. The backend was coded in Python and interfaces with the Elas?cSearch rest 
API. 
 
Features 
 
Slider: 
FridgeFairy has two modes: survival and crea?ve. In survival mode, all of the user’s ingredients 
must be in the resul?ng recipes. In crea?ve mode, only a small percentage of ingredients must 
be in each result, but recipes with more ingredient matches appear first. 
 
Meal Chaining: 
AMer a search, the user can choose what ingredients have been used and remove them. The 
ingredients are saved, so they can perform a new search and save recipes for their meal chains. 
 
Subs?tu?ons: 
Users can input ingredient that they would like to subs?tute for another ingredient. For 
example, almond, coconut, and oat flour can be subs?tutes for regular flour. This, along with 
the user including search terms they don’t want, is our method of accommoda?ng allergies. 
 
JSON recipe structure: 

 



Design 
 
Overall design: 

 
 
Design Choices: 
 

The rela?onship between front end with back end 
Separa?ng front end and back end by using 
Flask as an intermediary. 
Advantages: front end does not intercity with 
Elas?cSearch 
Disadvantages: harder to ini?ally test and 
debug the soMware. 

Keeping all logic in the Front End and directly 
accessing Elas?c from the JS code. 
Advantages: easier to create the applica?on 
at the start. 
Disadvantages: harder to separate the 
components to make them more reusable. 

Handling subs?tu?ons 
Having predefined common subs?tu?ons 
stored in the back end. 
Advantages: easier for the user to start using 
subs?tu?ons immediately. 
Disadvantages: finding good lists of 
subs?tu?ons that make sense. 

User can directly input subs?tu?ons. 
Advantages: user has full control over which 
subs?tu?ons they would like to use, along 
with if they would like the subs?tu?on to be 
applied at different ?mes. And it is easier to 
program in. 

How to implement meal chaining 
Keeping the meal chaining as a front-end 
feature and allowing users to decide what 
ingredients to get rid of. 
Advantages: Users can decide if they will use 
all their ingredients. It is also easier to 
program. 

Automa?ng user meal chaining process in the 
Back End. 
Advantages: meal chaining would be fairly 
automa?c. 
Disadvantages: users would have to know 
how much of every ingredient they have. 

Slider func?onality 
LeXng the slider control how many 
ingredients must match, but not limi?ng the 
non-matching ingredients. 
Advantages: More recipes will generate. 
Disadvantages: More missing ingredients. 

LeXng the slider control how many 
ingredients a recipe has based on the 
imputed recipes. 
Advantages: Greater control over the number 
of ingredients used. 
Disadvantages: Fewer recipes are generated 



My Role 
 
My main role in the project was in the overall idea?on and design, the slider, and the backend 
helper classes. I had the ini?al idea of crea?ng the recipe generator. Addi?onally, I proposed the 
structure of the backend to help reduce coupling and increase flexibility of our product. I 
researched the API of Elas?cSearch to understand the best func?ons to use for our goals. I was 
a big proponent in crea?ng flexibility for users with different needs, sugges?ng the 
func?onali?es of the slider and the subs?tu?ons. In terms of code, I wrote the query and search 
func?ons as well as the slider func?onality. 
 
Poster 
 

 
 
 
 
 
 



Code Samples 
 
Slider func?onality: 

 
 
Backend helper classes: 

 



 

 
 

 
 



 
 

 
 

 


