Fridge Fairy

What ingredients do you have?

What ingredients do you not want?

FridgeFairy is a website dedicated to discovering recipes based on input ingredients. The user
inputs the ingredients that they would like to use and the FridgeFairy searches over 1,000
recipes to find matches. FridgeFairy uses ElasticSearch to store recipes. ElasticSearch is an API
that takes in a large amount of data in the form of JSON and allows that data to be queried in a
dynamic manner. The backend was coded in Python and interfaces with the ElasticSearch rest
API.

Features

Slider:

FridgeFairy has two modes: survival and creative. In survival mode, all of the user’s ingredients
must be in the resulting recipes. In creative mode, only a small percentage of ingredients must
be in each result, but recipes with more ingredient matches appear first.

Meal Chaining:
After a search, the user can choose what ingredients have been used and remove them. The
ingredients are saved, so they can perform a new search and save recipes for their meal chains.

Substitutions:

Users can input ingredient that they would like to substitute for another ingredient. For
example, almond, coconut, and oat flour can be substitutes for regular flour. This, along with
the user including search terms they don’t want, is our method of accommodating allergies.

JSON recipe structure:
{

Design

Overall design:

Front End
(React)

REST API

Back End
(Flask)

User Auth
(SQLite)

Recipes
(ElasticSearch)

Design Choices:

The relationship between front end with back end

Separating front end and back end by using
Flask as an intermediary.

Advantages: front end does not intercity with
ElasticSearch

Disadvantages: harder to initially test and
debug the software.

Keeping all logic in the Front End and directly
accessing Elastic from the JS code.
Advantages: easier to create the application
at the start.

Disadvantages: harder to separate the
components to make them more reusable.

Handling substitutions

Having predefined common substitutions
stored in the back end.

Advantages: easier for the user to start using
substitutions immediately.

Disadvantages: finding good lists of
substitutions that make sense.

User can directly input substitutions.
Advantages: user has full control over which
substitutions they would like to use, along
with if they would like the substitution to be
applied at different times. And it is easier to
program in.

How to implement meal chaining

Keeping the meal chaining as a front-end
feature and allowing users to decide what
ingredients to get rid of.

Advantages: Users can decide if they will use
all their ingredients. It is also easier to
program.

Automating user meal chaining process in the
Back End.

Advantages: meal chaining would be fairly
automatic.

Disadvantages: users would have to know
how much of every ingredient they have.

Slider functionality

Letting the slider control how many
ingredients must match, but not limiting the
non-matching ingredients.

Advantages: More recipes will generate.
Disadvantages: More missing ingredients.

Letting the slider control how many
ingredients a recipe has based on the
imputed recipes.

Advantages: Greater control over the number
of ingredients used.

Disadvantages: Fewer recipes are generated

My Role

My main role in the project was in the overall ideation and design, the slider, and the backend
helper classes. | had the initial idea of creating the recipe generator. Additionally, | proposed the
structure of the backend to help reduce coupling and increase flexibility of our product. |
researched the API of ElasticSearch to understand the best functions to use for our goals. | was
a big proponent in creating flexibility for users with different needs, suggesting the
functionalities of the slider and the substitutions. In terms of code, | wrote the query and search
functions as well as the slider functionality.

Poster

R70¢ AIRY

. i ison| I n h ; o i
annie heto will janning [E2002h johnson angela li

OVERALL DESIGN

Front End (React)

OVERVIEW

WHAT IS ELASTICSEARCH?

lasticSearch is an AP that take
allows that data to be querie

FEATURES

Security & Login

Users can access AP after sign up
h

IRESTAPI

Back End (Flask)
Slider

Recipes (ElasticSearch) User Authentication (SQLite)

Slow Cooker Shaimp. in Pungalony

accounts,
dients stored for each ogin.

DESIGN CHOICES

The relationship between front end with back end

Meal Chaining

Directions

Substitutions

Separating front end and back end
by using Flask as an intermediary.
Advantages: front end does not in
tercity with ElasticSearch

Keeping all logic in the Front End
and directly accessing Elastic from
the JS code.

Advantages; easier to create the ap-
plication at the start

Disadvantages: "md(;v to initially Disadvantages: harder to separate
lients do you have? testand debug the software. the companents to. make. them
INTEGRATION TESTIN Handline SUBsttutions
o nputs bigistof naughty strings into front end, simulating malicious
- aving predefine le to directly input subst

Shaimp Jambaloye

Ingredients

Substitutions

AddModity Substiution

Directions

E

Advantages: e
start using substit
ly.

utions that make sense

/antages: finding good lists of

user has full control
h substitutions they would
ong with if d

How to implement meal chaining

Keeping the meal chaining as a
front end feature and allowing
users to decide what ingredients to
getrid of.

Advantages: Users can decide if
they will use all of their ingredients.
Itis also easier to program.

Automating user meal chaining pro
cess in the Back End.

Advantages: meal chaining would be
fairly automatic

Disadvantages: users would have to
know how much of every ingredient
they have.

Slider functionality

the number of ingredier

Disa g
generated.

Code Samples

Slider functionality:

searcher = ElasticSearcher (USERNAME, PASSWORD)
main = Blueprint('main', __name__)

@Emain.route("/search", methods GET'])

Q@jwt_required()

def get_recipe_by_ingredient():
" Function to route front end to elastic via Flask """
slider_value = int(request.args.get('slider', 1))
need_ingreds = request.args.get("ingredientsToInclude").split('_")
avoid_ingreds = request.args.get("ingredientsToAvoid").split("'

max_slider_val
min_slider_val
num_ingreds=len(need_ingreds)
must_match_increment=num_ingreds//(max_slider_val-min_slider_val+1l) #using python floor d
must_match=0
if slider_value == min_slider_val:
mode = “"survival"
else:
mode = "creative"
must_match=(1+max_slider_val-slider_value)*must_match_increment

print(need_ingreds)
need_ingreds = searcher.add_substitutions(need_ingreds)
print(need_ingreds)

response = searcher.search(need_ingreds, avoid_ingreds, mode,must_match)
return response

Backend helper classes:

""uClass to handel posting recipees to ElasticSearch to reset the ElasticSearch database"""
import requests
TIMEOUT_SECONDS =

v class ElasticPoster:

"nuClass that has methods for posting to and resetting elastic database"""

def __init__(self, username, password):

self.username = username

self.password = password

post(self, recipe, recipe_id):

""upost recipe to entry with i

url = f"https://localhost:9200/index/_doc/{recipe_id}"

headers = {"Content-Type": "application/json"}

req = requests.post(url, data=recipe, verify=False, headers=headers,
timeout=TIMEOUT_SECONDS,
auth=requests.auth.HTTPBasicAuth(self.username, self.password))

return req.status_code

post_all(self,json_list):
Bulk post all json files listed in json_lis
recipe_id = @
with open(json_list, 'r', encoding='utf-8') as file_list:
for json_path in file_list:
with open(json_path.strip(), 'r', encoding='utf-8') as file_json:
recipe = file_json.read()
self.post(recipe, recipe_id)
recipe_id += 1

clear_all(self):

"wiclear elastic search database"""

url="https://localhost:9200/index"

requests.delete(url,verify=False, timeout=TIMEOUT_SECONDS,
auth=requests.auth.HTTPBasicAuth(self.username, self.password))

""nClass to handel searching the ElasticSearch database"""
import json
import requests

TIMEOUT_SECONDS = 10

subs = {'oil': {'butter', 'olive oil', 'vegetable o0il'},
'onion': {'scallion', 'red onion', 'yellow onion'}}

#subs

class ElasticSearcher:
"Search the ElasticSearch database"""

def __init__(self, username, password):

self.username = username

self.password = password

self.headers = {
'Access-Control-Allow-Origin': 'x',
'Access—-Control-Allow-Headers': 'x',
'Access—-Control-Allow-Methods': 'x',
"Content-Type": "application/json"

def make_query(self,must_ingredients,must_not_ingreedients,
should_ingredients,must_match=1):

"""Contruct a query"""
query = {
"query": {

"bool" : {
"must" : [1,
"filter": [1,
"must_not" : [1,
"should" : [1,
"minimum_should_match"
}

}

for ingredient in must_ingredients:

query['query']['bool']['must'].append({"match" : { "ingredients" : ingredient }})
for ingredient in must_not_ingreedients:

query['query']['bool']['must_not'].append({"match" : { "ingredients" : ingredient }})
for ingredient in should_ingredients:

query['query']['bool'1['should'].append({"match" : { "ingredients" : ingredient }})
query['query'1['bool']['minimum_should_match']= must_match

return query

def search_one(self, keyword):
""nTesting Get recipes whose ingredients match a single keyword"""
url = "https://localhost:9200/index/_search/"
query =
ery" : {
"match" : {
"ingredients":

}
query['query']['match']['ingredients'] = keyword
req = requests.get(url, verify=False, headers=self.headers, json=query,
timeout=TIMEOUT_SECONDS,
auth=requests.auth.HTTPBasicAuth(self.username, self.password))
if not req.ok:
return []
content = json.loads(req.content)
hits = content['hits']['hits']
return hits

def search(self, need_ingreds, avoid_ingreds, mode,must_match):
""uGet recipes whose ingredients match a list of keywords based on the mode"""
if mode=="survival":
print("survival")
return self.survival_search(need_ingreds, avoid_ingreds,must_match)
mode=="creative"
print("creative")
return self.creative_search(need_ingreds, avoid_ingreds,must_match)

survival_search(self, keywords,filter_out_words,must_match):
"""Get recipes whose ingredients match all elements in a list of keywords
(ie use and)
and dont include any filterwords"""
url = "https://localhost:9200/index/_search/"
query = self.make_query(keywords, filter_out_words,[],must_match)
req = requests.get(url, verify=False, headers=self.headers, json=query,
timeout=TIMEOUT_SECONDS,
auth=requests.auth.HTTPBasicAuth(self.username, self.password))
if not req.ok:
return []
content = json.loads(req.content)
hits = content['hits']['hits']
return hits

def creative_search(self, keywords,filter_out_words,must_mat

""nGet recipes whose ingredients match some elements in a list of
keywords (ie use or)
and dont include filterwords"""
url = "https://localhost:9200/index/_search/"
query = self.make_query([],filter_out_words, keywords, must_match)
req = requests.get(url, verify=False, headers=self.headers, json=query,
timeout=TIMEOUT_SECONDS,
auth=requests.auth.HTTPBasicAuth(self.username, self.password))
if not req.ok:
return []
content = json.loads(reqg.content)
hits = content['hits']['hits"']
return hits

