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€ \What is Hyperspectral Imaging?

€ Hypercube and Spectral Signatures
€ Applications to Biomedicine

¢ Reference Dataset Information
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Spectral Unmixing of Biomedical Hyperspectral Imaging

What is Hyperspectral Imaging?

Bt

e Imaging camera measures light reflectance off e ‘?‘}:}‘2
of objects L / =

e The camera separates the image by
wavelength %/: i y.

e Different endmembers, or materials, in the the s el T
image reflect different amounts of light at each 8 \ ¢ [N
wavelength iﬁ n 1 %:A A wmE

e Endmembers will have different spectral ) L= ;
signatures which can be used to classify o l =

elements in the image

. . ofladate]
e Commonly applied to geospatial remote Dty /
sensing - ex. vegetation covers

=
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Biomedical Hyperspectral Imaging

FIELDS

CERNA

CM401

Hyperspectral Imaging System
Includes Computer with Thorlmage®LS
(Table Not Included)

Applying traditional geospatial HSI
techniques to biomedical data

Create open source python package
that performs dimensionality reduction,
unmixing, and segmentation

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=11095

Applying HSI techniques to eye slice
samples

A special microscope called a
spectrometer is used to collect
hyperspectral data from the samples

https://www.nature.com/articles/ncomms8990

HSI = Hyperspectral imaging
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Applications of Biomedical HSI

e Dr. Yeni Yucel at Eye Pathology Lab

e Effect of going into space on the eyes

e SANS: Spaceflight-Associated Neuro-
Ocular Syndrome

e |n space, fluids in the body pool in the
head

e Resultin flattening of the back of the eye @\7\
G-

and retinal nerve fiber thickening

FIELDS https://eyewiki.aao.org/Spaceflight-Associated_Neuro-Ocular_Syndrome_(SANS)
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Eye Anatomy

Choroid
Retina
Sclera

Anterior chamber

Posterior chamber

Inferior rectus

Canal of Schlemm
muscle
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Reference Dataset

For the sake of this summer project, we focused on
the lower half of the image containing the Muscle,
Sclera, Choroid, and Retina

Spectral Range: 528 to 836 nm (NUV to NIR)
Band Information: 78 bands at width of 4.0 nm
Dataset Information:

Ne =210 n, =120 npands = 78  Nena = 4

Endmembers:
Null Muscle Sclera Choroid Retina
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Reference Dataset

Biomedical Eye Mean Endmember Signatures
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What We’ve Accomplished

We've created a open-source Python package for Biomedical
Hyperspectral Imaging called BHSIpy:

S3HS 1 PY

Linear Unmixing Methods:
Supervised Methods: CVXOPT, Gradient Descent, Active Set

Unsupervised Methods: UFCLSU
Segmentation Methods:

Supervised: 3D-HyperUNet

Semi-Supervised: SAM, SIDSAM, JMSAM, NS3, K Means
Dimension Reduction:

Linear Band Selection and Principal Component Analysis
Visualization Methods:

3D Plotting Method for Hyperspectral Cubes
General Layer Plots for Unmixing and Segmentation

FIELDS



Hyperspectral Unmixing

€ \What is Unmixing?
€ Unmixing Methods
€ Results



Linear Hyperspectral Unmixing

Pixels are assumed to be linear combinations

of the endmember signatures in the image:
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FIELDS (a) Single scattering (b) Multiple scattering
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Linear Unmixing aims to solve the
following optimization problem:

- 2
min | Ma—r(3

Unconstrained: « = (M M)~ M7y
Non-negative Constraint: «; > (
Solved using convex optimization packages
or active-set methods or gradient descent

Fully Constrained: i = U Z a; =1
Reformat in Non Negative Constrained

Least Squares Problem™*:
o [57“]
1

At oM
min | M*a — 73 a; >0
a

17
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Linear Unmixing Methods

Iterative Active Set Methods

At the beginning of the project, we had
used CVXOPT, however, we found that
it was slow and computationally heavy.

We switch over to a faster active-set
method™;

MATLAB: /sqnonneg
Python: nnls

From what we had seen, nobody really
bothered to code the function in Python
til we did.

[*] Lawson, C. L. and R. J. Hanson. Solving Least-Squares Problems.

TGS Upper Saddle River, NJ: Prentice Hall. 1974. Chapter 23, p. 161.

Gradient Descent Methods

e Applying Gradient Descent to
Solve FCI Sl I Proahleme*

o’ = argminJ(a)

(81
subjectto a3 >0, i=1,..., R
R
Z”i = 1.
i=1
o = ) 1
J = R :
Z(:l Wy 0 < /ll(l‘) S [Vv](a)],

ak+1l)=alk)+...
+ pdiag{a(k)} [Vad (@) — 1VaJ(a) " a(k)]

[*] Jie Chen, Cédric Richard, Henri Lantéri, Céline Theys, Paul Honeine. A Gradient Based Method for

Fully Constrained Least-Squares Unmixing of Hyperspectral Images. Proc. IEEE workshop on
Qtatictical SRianal Proceccinag (SQPY 2011 Nice EFErance nn 201204
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| |
Unmixing Results o = (T3 T

Unconstrained Least Squares Unmixing
Biomedical Rat Eye Image

Muscle

FIELDS Pixelwise Average LSE: 0.0011 Running Time: 0.074 s
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Unmixing Results a; >0

Constrained Least Squares Unmixing
Biomedical Rat Eye Image
Sclera

Muscle
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Pixelwise Average LSE: 0.0062 Running Time: 16.583 s
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n n
Unmixing Results >0 a1

Fully Constrained Least Squares Unmixing
Biomedical Rat Eye Image

Muscle Sclera
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FIELDS Pixelwise Average LSE: 0.1532 Running Time: 17.808 s
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Hyperspectral Segmentation

¢ What is Segmentation?
¢ Segmentation Measures Overview
€ Results
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What is Segmentation? | Sp g

B refertac
cefledwee/

A method to determine endmembers in an enshy
image

\V 4

e Assume each pixel is pure bl

e Compare a pixel from the image, the test pixel, 1 ciapabor
with the reference spectrum of an endmember - ® budt

e Use various measure to determine similarity of
. cefledence]
the test spectral signature and reference ety
spectral signature s
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Segmentation Measures

We represent both the test and reference
signatures as n-dimensional vectors: Spechen s‘-y“*m L

ted = 2 308 5 ¢ ¥ %

S = (317 Sy e e s Snbands) Measures:

ot | )er)ue]u]so] o] az o |
( Nhgy ds> e SID

Techniques for measuring similarity: _ 2 bad 2
N iy Mixed < 1
1. |ls =t =) _[si — t:]*]2 Measures: et

® referean 7

— e SID-SAM

feg ) o JMSAM .
ITWRTRTIAT] e NS3
I][11s]]

L L
3 SID(r,r’) =) pjlog (‘%) + ) g;log (Zq)—3> w3
J J

n=1

2. B¢ = arccos (

bad 1

E Chein-l Chang. “An Information-Theoretic Approach to Spectral Variability, Similarity, and Discrimination for Hyperspectral Image Analysis.” IEEE Transactions on Information Theory 46 (2000):

1927.
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Spectral Angle Mapper Segmentation

Angle

Original Image

Null Muscle Sclera Choroid Retina
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SIDSAM TAN Segmentation

Angle, Probabilistic

Original Image Segmented Image

Null Muscle Sclera Choroid Retina
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JMSAM TAN Segmentation

Angle, Distance
Original Image Segmented Image

Null Muscle Sclera Choroid Retina
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NS3 Segmentation

Angle, Distance

Original Image

Null Muscle Sclera Choroid Retina
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We adapt the 3D Hyper-UNET* for geospatial hyperspectral and multispectral imaging proposed by Nischal et
al. to the realm of biomedical hyperspectral imaging

Combines both spatial and spectral information using 3D kernel convolutions

CONCATINATE

_._._._._/_'—ﬁ_rJ_';'

FIELDS

J. Nishchal, S. Reddy, N. Navya Priya, V. R. Jenni, R. Hebbar and B. S. Babu, "Pansharpening
and Semantic Segmentation of Satellite Imagery," 2021 Asian Conference on Innovation in
Technology (ASIANCON), 2021, pp. 1-9, doi: 10.1109/ASIANCON51346.2021.9544725.
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Deep Learning Segmentation Results

Trainable params: 5,028,101

net = U_Net( s :
unet U_Net(dataset Mam do=d-=bl= naprams: 1,344

"biomedical_imsge', num_epochs=1000, reduced_size_x_y=144, n_features=5)

loU: 0.8054
Loss: 0.0386

FIELDS Null Muscle Sclera Choroid Retina
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Dimension Reduction

€ Linear Predictor Band Selection
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L i n ea r B a n Band 13 Band 14 Band 15
Motivation:
AS the band Width iS SO 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
the hyperSpeCtra| Image Band 19 Band 21 . Band 22

We do not gain that muc
keeping adjacent bands
choose only the most re

= 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
our unmixing and segme Band 24 Band 25 Band 26

Algorithm*;

Start with an initial set o
linear predictor model u o s 100 15 200 o s 100 150 200 0 s 100 150 200
next band with the great cand 2 0 oo S

the model for ®, Repeat - '
bands are found or errol

100

[IDu, Q., & Yang, H. (2008). Similarity-Based Ui 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Analysis. IEEE Geoscience and Remote Sensiny rcucis, i), vur—vvu. uut 1u. 1 1VaNYI=.2VV0.cVVVLV 1D
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Linear Band Selection Results

Linear Band Selection Relative LSE (30 Bands)
35

As the relative LSE drops to practically
i zero after 18 bands, we stop the
algorithm here. We are left with the
LSE with i endmembers:
respect to *’] |
previous !
selected ; ®=[4,6,7,8,9, 11,13, 14, 15, 19, 21,
bands | : 22,24, 25, 26, 29, 36, 77]
i Adding Band 7
104 1 Current Selected Bands: [15, 77, 29, 4, 22, 9, 21, 14, 19, 25, 8, 11, 13, 6, 26, 36, 24, 7]
: Current Selected Bands Error: ©.14512373635352022
H Number of Selected Bands: 18
E Number of Bands Selected by Algorithm
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What We’ve Accomplished

We've created a open-source Python package for Biomedical
Hyperspectral Imaging called BHSIpy:

S3HS 1 PY

Linear Unmixing Methods:
Supervised Methods: CVXOPT, Gradient Descent, Active Set

Unsupervised Methods: UFCLSU
Segmentation Methods:

Supervised: 3D-HyperUNet

Semi-Supervised: SAM, SIDSAM, JMSAM, NS3, K Means
Dimension Reduction:

Linear Band Selection and Principal Component Analysis
Visualization Methods:

3D Plotting Method for Hyperspectral Cubes
General Layer Plots for Unmixing and Segmentation
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Questions?
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