
Interac(ve Installa(on to Explore Joint Behavior

The result of this project is a virtual interac3ve installa3on. The goal of the installa3on is to
create an open-ended environment to learn about joints in Unity through play. Joints are a type
of connec3on between objects in Unity that follow special physics rules. They are o>en used in
character construc3on and are challenging because of the intricacies they add to collisions. In
this installa3on, the user can interact in 3rd person using the WASD keys and space bar. The
installa3on is made up by a hanging cube apparatus, a capsule apparatus, and floor objects.
These are made by fixed joints, hinge joints, and spring joints.

Design Process

I began this project by sketching out ideas for
apparatuses that could inspire interes3ng explora3on
in the func3onality of each joint type.

The player is represented by a 1.5m radius sphere and has an empty game object represen3ng
the camera posi3on.

 Figure 1: Input Ac3on Scheme

An empty game object for the input manager is connected to the input manager script.
Similarly, the movement controller script and rota3on controller script are connected to empty
game objects. The movement controller and rota3on controller are serialized with the player
and the empty game object represen3ng the camera posi3on in the player.

A camera follow script is connected to the main camera and the camera posi3on from the
player is target field. A rigid body is added to the player and rota3on is frozen in all direc3ons.
To allow the player to interact with objects in the scene they need their own rigid bodies. The
mass of the player is set to 30 where the mass of the objects in the scene are set to 1 to ensure
correct interac3ons.

The jump capabili3es are added to the player with the Jump Controller script, which extends
mono behavior and is connected to the empty game object jump controller. The ini3alize
method subscribes to the JumpAc3on_Performed method. Ini3ally, the player was just
teleported up using MoveTowards(), but that results in jerky jumping. So, a jump counter was
introduced to make the jumping more natural. When the space bar is pressed, the jump counter
is started by seVng it to one. Then, if the player is jumping, the FixedUpdate() method translate
the player up by using transform.Translate and increases the counter. Once the max value of the
counter is reached, the counter is reset to zero.

Unfortunately, since the CameraFollow() code from a previous project was made for a first
person perspec3ve, transi3oning to 3rd person raised some issues. With the 10m offset, the 3rd
person camera lost the player when rota3ng a large amount. To fix this the offset vector must
change with respect to the player rather than be 10m in the nega3ve z direc3on. The offset
vector is calculated from the target transform.forward and a serialized offset scalar. In the

A new input ac3on
scheme is made for the
player. The move ac3on
returns a Vector2 based
on the WASD keys. The
rotate ac3on returns a
Vector2 based on the
mouse. The jump ac3on
is connected to the
space bar.

LateUpdate() method, the camera is moved to the composite of the players posi3on and the
offset vector. Based on research, I changed FixedUpdate() to LateUpdate() to avoid jumpy
visuals.

Figure 2: Cube Apparatus Hierarchy

There was a lot of experimenta3on associated to establishing the anchors and the spring
constants for each joint to get the tentacles moving correctly. Ini3ally the tentacles would all get
tangled together. To fix this the anchors of the springs needed to be set further apart. The
springs would also collapse onto the floor. To fix this, the spring constants had to be increased
so the springs have more resistance. What ended up working was seVng the spring constants to
80, 75, 70, and 60 from top to boaom. The higher spring constant at the top allow the tentacles
to not collapse to the floor, while to lower ones at the boaom makes the tentacles interes3ng to
interact with.

The capsule apparatus is made up by a sta3onary capsule and 3 spheres evenly spaced around
it. The capsule and the spheres each have a rigid body. The spheres’ y movement is frozen, and
the capsule posi3on and rota3on is frozen. Three hinge joints connect the capsule to each
sphere. To achieve the correct behavior, the axis of the rota3on is the y axis and the anchor is
the center of the capsule. The three spheres freely rotate about the capsule and bump into each
other and that causes more rota3on.

To create more interes3ng behavior, a fixed joint connects one sphere to another. This forces
the spheres to be separated by a fixed amount, but the third sphere can move freely between
the first and second sphere. A fixed joint is the most basic joint and s3ffly connects two objects.
The capsule’s mass is set to 50 so that the player cannot pass through the capsule since the
posi3on is frozen.

 The floor objects are cylinders. It was difficult to figure out the correct anchor to get the right
spring behavior. First the floor was used as an anchor, but this was problema3c since then the

The cube apparatus is organized into a hierarchy. Each
tentacle is made up of 4 cubes. Every cube gets a rigid
body. The ceiling 3le has a rigid body as well and is
frozen in posi3on and rota3on as it serves as the
anchor for the tentacles. A spring joint is added to the
ceiling 3le and the top cube is connected to it. Then
the top cube gets a spring joint and that’s connected to
the middle cube. This paaern is repeated all the way to
the boaom joint.

floor had to have a rigid body. This caused the player to fall through the floor. I also tried making
a second floor to anchor the objects, but this also failed as the spring joint func3oned ver3cally
instead of horizontally. Adding an empty game object that floats slightly off the floor as the
anchor fixed the issues. A rigid body and spring joint are added to the anchor and the cylinder
floor object was aaached to the anchor. The spring constant was set to 6, a low value, so the
floor objects have more movement range. Each floor object got its own empty game object
anchor.

Finally, stairs were added so the user can interact with the tentacle cubes from a higher level.
Then materials were added to color the scene. A 3le texture from 9t5 PBR Textures Pack
Freebies was added to the floor, as texture was needed to tell movement beaer. A transparent
material was made for the player sphere. The color was set to blue, with an alpha value of
about 0.5.

Results

 Figure 3: 3rd Person Player View

 Figure 4: Cube Apparatus

The interac3ve installa3on includes a
hanging cube apparatus, a capsule
apparatus, and floor objects. The user,
represented by a sphere, can interact
with the installa3on by moving around
with the WASD keys. In addi3on, the
user can jump by pressing the spacebar.
The mouse can be used to rotate the
player’s view.

The hanging cube apparatus consists of
tentacles hanging from the ceiling 3les.
The tentacles are made up by cubes
connected by spring joints. They oscillate
and bounce as the user hits them. There
are stairs the user can jump up to achieve
different ver3cal heights to further
interact with the apparatus.

 Figure 5: Capsule Apparatus

 Figure 6: Floor Objects

References:

haps://www.youtube.com/watch?v=MElbAwhMvTc

haps://code.tutsplus.com/tutorials/unity3d-third-person-cameras--mobile-11230

haps://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html

The capsule apparatus has a sta3onary
capsule surrounded by 3 spheres. The
spheres rotate around the capsule when
the user bumps into them.

The floor objects are anchored on the floor
and move around parallel to the floor as the
user interacts with them.

https://www.youtube.com/watch?v=MElbAwhMvTc
https://code.tutsplus.com/tutorials/unity3d-third-person-cameras--mobile-11230
https://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html

