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Our Goal
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Graphs and Posets

Poset: A partially ordered set

b < a < c
b < d < c
b < d < e

Arrow Convention:
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Signed Graphs

Possible Edges:
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Signed Graph

How can we tell if it’s acyclic?
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Signed Posets
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Proper coloring

Proper coloring: A function κ : V (G) → Z such that for all
adjacent vertices v ,w , κ(v) ≠ σ(v ,w)κ(w).

Examples of improper coloring:
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B-symmetric chromatic function

YG(. . . , x−2, x−1, x0, x1, x2, . . . ) :=
∑

κ:V (G)→Z
proper

∏
v∈V (G)

xκ(v)

Examples:

Y − = · · · + x−2 + x−1 + x1 + x2 + · · ·

Y −

+

=
∑
i ,j

xixj −
∑

i
x2

i − 2
∑

i
xix−i + 2x2

0
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Linear extension of a signed poset
Poset P: Lift P̃:

v w

v −v

w −w

B-symmetric linear extensions:

−w

−v

v

w

ω
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w
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Order-preserving coloring

If v < w in the lift P̃ and κ : P̃ → Z is order-preserving, then
κ(v) < κ(w). Note: κ(v) = −κ(−v)

Some examples:

−b
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a
b
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−v

v

w
a

−a
−w

−v

v

w a

−a

0 −w

−v

v
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What did we want to do again?

Goal: Given a signed graph G and a nonnegative integer k,

use
YG to compute sinkG(k), the number of acyclic orientations
of G with k sinks.

Specifically, we will find a linear map ϕ : BSym → Z[t] such that

ϕ(YG) =
∞∑

k=0
sinkG(k)tk .

For example, if G =
−

, then ϕ(YG) = 1 + 3t:
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Step-by-step

Step 1: Decompose YG into a sum, over signed posets, of
quasi-B-symmetric functions:

YG =
∑

P is an acyclic
orientation of G

YP

Step 2: Find a convenient expression for YP as a sum over the
linear extensions of P:

YP =
∑

α is a linear
extension of P

QA(α,ω),ε(α)

Step 3: Use the convenient expression to find a linear map
ϕ : QBSym → Z[t] such that for any signed poset P with k sinks,
ϕ(YP) = tk .
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Step 1: YP

Given a signed poset P with vertices v1, . . . , vn, define

YP =
∑

κ is an order-preserving
coloring of P

xκ(v1) · · · xκ(vn).

YP is quasi-B-symmetric.

Lemma
For any signed graph G,

YG =
∑

P is an acyclic
orientation of G

YP .

Proof.
Given a coloring, induce the unique acyclic orientation of G which
makes the coloring order-preserving. ◻



15/22

Signed graphs Colorings Acyclic orientations References

Step 1: YP

Given a signed poset P with vertices v1, . . . , vn, define

YP =
∑

κ is an order-preserving
coloring of P

xκ(v1) · · · xκ(vn).

YP is quasi-B-symmetric.

Lemma
For any signed graph G,

YG =
∑

P is an acyclic
orientation of G

YP .

Proof.
Given a coloring, induce the unique acyclic orientation of G which
makes the coloring order-preserving. ◻



15/22

Signed graphs Colorings Acyclic orientations References

Step 1: YP

Given a signed poset P with vertices v1, . . . , vn, define

YP =
∑

κ is an order-preserving
coloring of P

xκ(v1) · · · xκ(vn).

YP is quasi-B-symmetric.

Lemma
For any signed graph G,

YG =
∑

P is an acyclic
orientation of G

YP .

Proof.
Given a coloring, induce the unique acyclic orientation of G which
makes the coloring order-preserving. ◻



16/22

Signed graphs Colorings Acyclic orientations References

Step 2: A convenient expression

Our expression for YP is a sum over all order-preserving colorings,
but we want to write it as a (finite) sum over just the linear
extensions. But how?

Compare linear extensions to encode how they can be “averaged”
to give order-preserving colorings.
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Step 2: A convenient expression, continued
Fix a linear extension ω. Given a linear extension α, how do we
determine what α should contribute to YP?

Look at the disagreements between two linear extensions:

−b
−a

a
b

−w

−v

v

w

ω

−w

−v

v

w
α

}
−1

0

}
1

↝

−w

−v

v

w c

−c

∑
0<a<b

x−axb +
∑
0<c

x−cxc

=
∑

0<a≤b
x−axb

= Q{0},−+
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Step 2: A convenient expression, continued

For S ⊆ {0, . . . , n − 1} and ε ∈ {−1, 1}n, define

QS,ε :=
∑

0≤i1≤···≤in
s∈S =⇒ is<is+1
0∈S =⇒ 0<i1

xε1i1 · · · xεnin .

Lemma
Let P be a signed poset. Then

YP =
∑

α is a linear
extension of P

QA(α,ω),ε(α).
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Step 3: An awful function

Let S ⊆ {0, . . . , n − 1} and ε ∈ {−1, 1}n. Then

ϕ(QS,ε) :=



t(t − 1)k S = {0, . . . , n − k − 1} and
εi > 0 for each i ∈ {n − k, . . . , n}

(t − 1)k S = {0, . . . , n − k − 1}, εn−k < 0, and
εi > 0 for each i ∈ {n − k + 1, . . . , n}

(t − 1)n S = ∅ and εi > 0 for each i ∈ {1, . . . , n}

0 otherwise.

Obnoxious obstruction: The QS,ε’s aren’t linearly independent!

Q{0},−+ − Q{0,1},−+ = Q{0},+− − Q{0,1},+−.
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The conclusion

Theorem
For any signed graph G,

ϕ(YG) =
∞∑

k=0
sinkG(k)tk .

Proof.
We have

ϕ(YG) =
∑

Y is an acyclic
orientation of G

ϕ(YP)

=
∑

Y is an acyclic
orientation of G

tsink(P)

◻



20/22

Signed graphs Colorings Acyclic orientations References

The conclusion

Theorem
For any signed graph G,

ϕ(YG) =
∞∑

k=0
sinkG(k)tk .

Proof.
We have

ϕ(YG) =
∑

Y is an acyclic
orientation of G

ϕ(YP)

=
∑

Y is an acyclic
orientation of G

tsink(P)

◻



21/22

Signed graphs Colorings Acyclic orientations References

What now?

Can we find a natural basis for BSym on which ϕ acts nicely?

Can this result be refined/modified by choosing a better ϕ?

What other information about G is “linear” in YG?

What other nice properties does YG have?

What variations on YG might have nice properties?
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