

Colorings 0000 Acyclic orientations

References

Signed posets and a *B*-symmetric generalization of Stanley's acyclicity theorem

Jake Huryn, Kat Husar, and Hannah Johnson

joint work with Eric Fawcett, Torey Hilbert and Mikey Reilly under Sergei Chmutov

The Ohio State University

August 16, 2020

Acyclic orientations

Our Goal

Colorings 0000 Acyclic orientations

References

Graphs and Posets

Coloring 0000 Acyclic orientations

References

Graphs and Posets

Arrow Convention:

< □ > < @ > < ≧ > < ≧ > ≧ > ○ Q @ 3/22

Poset: A partially ordered set

Coloring 0000 Acyclic orientations

References

Graphs and Posets

Arrow Convention:

Poset: A partially ordered set

< □ > < @ > < ≧ > < ≧ > ≧ ⑦ Q @ 3/22

Coloring

Acyclic orientations

References

Signed Graphs

Possible Edges:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Colorings 0000 Acyclic orientations

References

Signed Graph

・ロト・(ア・・ヨト・ヨー) つへで 5/22

Coloring 0000 Acyclic orientations

References

< □ > < @ > < ≧ > < ≧ > ≧ < ○ 5/22

Signed Graph

How can we tell if it's acyclic?

Colorings 0000 Acyclic orientations

References

Covering Graphs

Signed Graph:

Coloring

Acyclic orientations

References

Covering Graphs

Signed Graph:

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Coloring

Acyclic orientations

References

Covering Graphs

Signed Graph:

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Coloring

Acyclic orientations

References

Covering Graphs

Signed Graph:

< □ > < @ > < 差 > < 差 > 差 の < ℃ 6/22

Colorings 0000 Acyclic orientations

References

Covering Graph Examples

Signed Graph:

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 7/22

Coloring

Acyclic orientations

References

Covering Graph Examples

Signed Graph:

Covering Graph:

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 7/22

Coloring

Acyclic orientations

References

Covering Graph Examples

Signed Graph:

Covering Graph:

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 7/22

Coloring 0000 Acyclic orientations

References

-c

+c

Covering Graph Examples

Signed Graph:

Covering Graph:

≣ ൗ�় 7/22

Signed graphs 0000000● Colorings 0000 Acyclic orientations

References

Signed Posets

Signed Graph:

Coloring

Acyclic orientations

References

8/22

Signed Posets

Covering Graph:

Signed Graph:

Coloring

Acyclic orientations

References

Signed Posets

Covering Graph:

Signed Graph:

Signed Posets:

Coloring

Acyclic orientations

References

Signed Posets

Covering Graph:

Signed Graph:

Signed Posets:

+c < -d < +b < +a-d > -e-c > +d > -b > -a+d < +e

★ E ★ E ★ E → A ← 8/22

Colorings •000

Acyclic orientations

References

Proper coloring

Proper coloring: A function $\kappa \colon V(G) \to \mathbb{Z}$ such that for all adjacent vertices $v, w, \kappa(v) \neq \sigma(v, w)\kappa(w)$.

Colorings •000

Acyclic orientations

References

Proper coloring

Proper coloring: A function $\kappa : V(G) \to \mathbb{Z}$ such that for all adjacent vertices $v, w, \kappa(v) \neq \sigma(v, w)\kappa(w)$.

Examples of improper coloring:

< □ > < @ > < E > < E > E の Q @ 9/22

Colorings 0000 Acyclic orientations

References

B-symmetric chromatic function

$$Y_{G}(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots) \coloneqq \sum_{\substack{\kappa: V(G) \to \mathbb{Z} \\ \text{proper}}} \prod_{v \in V(G)} x_{\kappa(v)}$$

Colorings 0000

Acyclic orientations

References

B-symmetric chromatic function

$$Y_G(\ldots, x_{-2}, x_{-1}, x_0, x_1, x_2, \ldots) \coloneqq \sum_{\substack{\kappa: V(G) \to \mathbb{Z} \\ \text{proper}}} \prod_{v \in V(G)} x_{\kappa(v)}$$

Examples:

$$Y_{\bigcirc -} = \cdots + x_{-2} + x_{-1} + x_1 + x_2 + \cdots$$

$$Y_{r_{+}} = \sum_{i,j} x_i x_j - \sum_i x_i^2 - 2 \sum_i x_i x_{-i} + 2x_0^2$$

Colorings 00●0 Acyclic orientations

References

Linear extension of a signed poset

Poset *P*:

Lift \tilde{P} :

< □ ▶ < @ ▶ < \ = ▶ < \ = ♡ < ♡ 11/22

Linear extension of a signed poset

Poset *P*:

Lift \tilde{P} :

B-symmetric linear extensions:

Colorings 0000 Acyclic orientations

References

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ → ○ ○ 12/22

Order-preserving coloring

If v < w in the lift \tilde{P} and $\kappa \colon \tilde{P} \to \mathbb{Z}$ is **order-preserving**, then $\kappa(v) < \kappa(w)$. **Note:** $\kappa(v) = -\kappa(-v)$

Colorings 0000 Acyclic orientations

References

Order-preserving coloring

If v < w in the lift \tilde{P} and $\kappa \colon \tilde{P} \to \mathbb{Z}$ is order-preserving, then $\kappa(v) < \kappa(w)$. Note: $\kappa(v) = -\kappa(-v)$

Some examples:

Acyclic orientations •00000000

<ロ > < 合 > < 言 > < 言 > 言 の < で 13/22

What did we want to do again?

Goal: Given a signed graph G and a nonnegative integer k,

What did we want to do again?

Goal: Given a signed graph G and a nonnegative integer k, use Y_G to compute sink_G(k), the number of acyclic orientations of G with k sinks.

What did we want to do again?

Goal: Given a signed graph G and a nonnegative integer k, use Y_G to compute sink_G(k), the number of acyclic orientations of G with k sinks.

Specifically, we will find a linear map $\varphi \colon \mathsf{BSym} \to \mathbb{Z}[t]$ such that

$$\varphi(Y_G) = \sum_{k=0}^{\infty} \operatorname{sink}_G(k) t^k.$$

What did we want to do again?

Goal: Given a signed graph G and a nonnegative integer k, use Y_G to compute sink_G(k), the number of acyclic orientations of G with k sinks.

Specifically, we will find a linear map $\varphi \colon \mathsf{BSym} \to \mathbb{Z}[t]$ such that

$$\varphi(Y_G) = \sum_{k=0}^{\infty} \operatorname{sink}_G(k) t^k.$$

For example, if $G = \bigcirc$, then $\varphi(Y_G) = 1 + 3t$:

Signed graphs	Colorings	Acyclic orientations	References
00000000	0000	00000000	

Step-by-step

Step 1: Decompose Y_G into a sum, over signed posets, of quasi-*B*-symmetric functions:

$$Y_G = \sum_{\substack{P \text{ is an acyclic} \\ \text{orientation of } G}} Y_P$$

<ロ > < 合 > < 言 > < 言 > 言 の < で 14/22

Signed graphs	Colorings	Acyclic orientations	References
00000000	0000	00000000	

Step-by-step

Step 1: Decompose Y_G into a sum, over signed posets, of quasi-*B*-symmetric functions:

$$Y_G = \sum_{\substack{P \text{ is an acyclic} \\ \text{orientation of } G}} Y_P$$

Step 2: Find a convenient expression for Y_P as a sum over the linear extensions of P:

$$Y_P = \sum Q_{A(\alpha,\omega),\varepsilon(\alpha)}$$

 α is a linear extension of P

Signed graphs	Colorings	Acyclic orientations	References
0000000	0000	00000000	

Step-by-step

Step 1: Decompose Y_G into a sum, over signed posets, of quasi-*B*-symmetric functions:

$$Y_G = \sum_{\substack{P \text{ is an acyclic} \\ \text{orientation of } G}} Y_P$$

Step 2: Find a convenient expression for Y_P as a sum over the linear extensions of P:

$$Y_P = \sum Q_{A(\alpha,\omega),\varepsilon(\alpha)}$$

 α is a linear extension of *P*

Step 3: Use the convenient expression to find a linear map $\varphi \colon \text{QBSym} \to \mathbb{Z}[t]$ such that for any signed poset P with k sinks, $\varphi(Y_P) = t^k$.

Signed graphs Colorings

Acyclic orientations

References

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Step 1: Y_P

Given a signed poset P with vertices v_1, \ldots, v_n , define

$$Y_P = \sum_{\substack{\kappa \text{ is an order-preserving} \\ \text{ coloring of } P}} x_{\kappa(v_1)} \cdots x_{\kappa(v_n)}.$$

 Y_P is quasi-*B*-symmetric.

phs	Colorings	Асу
0	0000	00

Acyclic orientations

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Step 1: Y_P

Given a signed poset P with vertices v_1, \ldots, v_n , define

$$Y_P = \sum_{\substack{\kappa \text{ is an order-preserving} \\ \text{ coloring of } P}} x_{\kappa(v_1)} \cdots x_{\kappa(v_n)}.$$

 Y_P is quasi-*B*-symmetric.

Lemma

Signed gra

For any signed graph G,

$$Y_G = \sum_{\substack{P \text{ is an acyclic}}} Y_P.$$

orientation of G

raphs	Colorings	Acycl
000	0000	0000

ic orientations 00000

Step 1: Y_P

Given a signed poset P with vertices v_1, \ldots, v_n , define

$$Y_P = \sum_{\substack{\kappa \text{ is an order-preserving} \\ \text{ coloring of } P}} x_{\kappa(v_1)} \cdots x_{\kappa(v_n)}.$$

 Y_P is quasi-B-symmetric.

lemma

Signed g

For any signed graph G,

$$Y_G = \sum_{\substack{P \text{ is an acyclic} \\ \text{orientation of } G}} Y_P.$$

Proof.

Given a coloring, induce the unique acyclic orientation of G which makes the coloring order-preserving. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Coloring

Acyclic orientations

References

Step 2: A convenient expression

Our expression for Y_P is a sum over all order-preserving colorings, but we want to write it as a (finite) sum over just the linear extensions. But how?

Coloring

Acyclic orientations

References

Step 2: A convenient expression

Our expression for Y_P is a sum over all order-preserving colorings, but we want to write it as a (finite) sum over just the linear extensions. But how?

Compare linear extensions to encode how they can be "averaged" to give order-preserving colorings.

Step 2: A convenient expression, continued

Fix a linear extension ω . Given a linear extension α , how do we determine what α should contribute to Y_P ?

・ ロ ト ・ (日 ト ・ 三 ト ・ 三 ・ つ へ (* 17/22)

Step 2: A convenient expression, continued

Fix a linear extension ω . Given a linear extension α , how do we determine what α should contribute to Y_P ? Look at the disagreements between two linear extensions:

・ ロ ト ・ (日 ト ・ 三 ト ・ 三 ・ つ へ (* 17/22)

Step 2: A convenient expression, continued

Fix a linear extension ω . Given a linear extension α , how do we determine what α should contribute to Y_P ? Look at the disagreements between two linear extensions:

Step 2: A convenient expression, continued

Fix a linear extension ω . Given a linear extension α , how do we determine what α should contribute to Y_P ? Look at the disagreements between two linear extensions:

$$\sum_{0 < a < b} x_{-a} x_b + \sum_{0 < c} x_{-c} x_c$$

・ ロ ト ・ (日 ト ・ 三 ト ・ 三 ・ つ へ (* 17/22)

Step 2: A convenient expression, continued

Fix a linear extension ω . Given a linear extension α , how do we determine what α should contribute to Y_P ? Look at the disagreements between two linear extensions:

Step 2: A convenient expression, continued

Fix a linear extension ω . Given a linear extension α , how do we determine what α should contribute to Y_P ? Look at the disagreements between two linear extensions:

<ロト</th>
 ・< 三ト< 三ト</th>
 シーン
 18/22

Step 2: A convenient expression, continued

For $S \subseteq \{0, \ldots, n-1\}$ and $\varepsilon \in \{-1, 1\}^n$, define

$$Q_{S,\varepsilon} := \sum_{\substack{0 \le i_1 \le \dots \le i_n \\ s \in S \implies i_s < i_{s+1} \\ 0 \in S \implies 0 < i_1}} x_{\varepsilon_1 i_1} \cdots x_{\varepsilon_n i_n}.$$

<ロト<日ト<日、<三ト<三ト<三ト<三ト<18/22

Step 2: A convenient expression, continued

For
$$S \subseteq \{0, \ldots, n-1\}$$
 and $\varepsilon \in \{-1, 1\}^n$, define

$$Q_{S,\varepsilon} := \sum_{\substack{0 \le i_1 \le \dots \le i_n \\ s \in S \implies i_s < i_{s+1} \\ 0 \in S \implies 0 < i_l}} x_{\varepsilon_1 i_1} \cdots x_{\varepsilon_n i_n}.$$

Lemma

Let P be a signed poset. Then

$$Y_P = \sum Q_{A(\alpha,\omega),\varepsilon(\alpha)}.$$

 α is a linear extension of P

Coloring 0000 Acyclic orientations

References

Step 3: An awful function

Let $S \subseteq \{0, \ldots, n-1\}$ and $\varepsilon \in \{-1, 1\}^n$. Then

<ロト</th>
 ・< 言ト< 言ト</th>
 ・< 19/22</th>

Colorings 0000

Acyclic orientations

References

4 ロト 4 日 ト 4 目 ト 4 目 ト 4 目 か 9 9 19/22

Step 3: An awful function

Let
$$S \subseteq \{0, \ldots, n-1\}$$
 and $\varepsilon \in \{-1, 1\}^n$. Then

$$\varphi(Q_{S,\varepsilon}) := \begin{cases} t(t-1)^k & S = \{0, \dots, n-k-1\} \text{ and} \\ \varepsilon_i > 0 \text{ for each } i \in \{n-k, \dots, n\} \\ (t-1)^k & S = \{0, \dots, n-k-1\}, \ \varepsilon_{n-k} < 0, \text{ and} \\ \varepsilon_i > 0 \text{ for each } i \in \{n-k+1, \dots, n\} \\ (t-1)^n & S = \emptyset \text{ and } \varepsilon_i > 0 \text{ for each } i \in \{1, \dots, n\} \\ 0 & \text{otherwise.} \end{cases}$$

Colorings 0000

Acyclic orientations

References

Step 3: An awful function

Let
$$S \subseteq \{0, \ldots, n-1\}$$
 and $\varepsilon \in \{-1, 1\}^n$. Then

$$\varphi(Q_{S,\varepsilon}) := \begin{cases} t(t-1)^k & S = \{0, \dots, n-k-1\} \text{ and} \\ \varepsilon_i > 0 \text{ for each } i \in \{n-k, \dots, n\} \\ (t-1)^k & S = \{0, \dots, n-k-1\}, \varepsilon_{n-k} < 0, \text{ and} \\ \varepsilon_i > 0 \text{ for each } i \in \{n-k+1, \dots, n\} \\ (t-1)^n & S = \emptyset \text{ and } \varepsilon_i > 0 \text{ for each } i \in \{1, \dots, n\} \\ 0 & \text{otherwise.} \end{cases}$$

Obnoxious obstruction: The $Q_{S,\varepsilon}$'s aren't linearly independent!

$$Q_{\{0\},-+} - Q_{\{0,1\},-+} = Q_{\{0\},+-} - Q_{\{0,1\},+-}.$$

<ロト</th>
 ・< 言ト< 言ト</th>
 ・< 19/22</th>

Coloring

Acyclic orientations 000000000

References

<ロト</th>
 ・< 言ト< 言ト</th>
 うへで 20/22

The conclusion

Theorem For any signed graph G,

$$\varphi(Y_G) = \sum_{k=0}^{\infty} \operatorname{sink}_G(k) t^k.$$

Coloring

Acyclic orientations

References

The conclusion

Theorem For any signed graph G,

$$\varphi(Y_G) = \sum_{k=0}^{\infty} \operatorname{sink}_G(k) t^k.$$

Proof. We have

$$\varphi(Y_G) = \sum_{\substack{Y \text{ is an acyclic} \\ \text{orientation of } G}} \varphi(Y_P)$$
$$= \sum_{\substack{Y \text{ is an acyclic} \\ \text{orientation of } G}} t^{\text{sink}(P)}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ♥ ○ □ 20/22

Colorings 0000 Acyclic orientations 00000000

References

<ロ > < 合 > < 言 > < 言 > 言 の < ? 21/22

What now?

Can we find a natural basis for BSym on which φ acts nicely?

Signed graphs	
00000000	

Coloring 0000 Acyclic orientations

References

What now?

Can we find a natural basis for BSym on which φ acts nicely?

Can this result be refined/modified by choosing a better φ ?

<ロト < 回 ト < 三 ト < 三 ト 三 の へ C 21/22

Signed graphs	
00000000	

Acyclic orientations

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ → ○ ○ 21/22

What now?

Can we find a natural basis for BSym on which φ acts nicely?

Can this result be refined/modified by choosing a better $\varphi?$

What other information about G is "linear" in Y_G ?

Coloring 0000 Acyclic orientations

References

<ロト</th>
 ・< 三ト< 三ト</th>
 シーン
 21/22

What now?

Can we find a natural basis for BSym on which φ acts nicely? Can this result be refined/modified by choosing a better φ ? What other information about *G* is "linear" in *Y*_{*G*}?

What other nice properties does Y_G have?

Signed graph	S
00000000	

Acyclic orientations

<ロト</th>
 ・< 三ト< 三ト</th>
 シーン
 21/22

What now?

Can we find a natural basis for BSym on which φ acts nicely?

Can this result be refined/modified by choosing a better φ ?

What other information about G is "linear" in Y_G ?

What other nice properties does Y_G have?

What variations on Y_G might have nice properties?

Coloring 0000 Acyclic orientations

References

References

Richard P. Stanley. "Acyclic orientations of graphs". In: *Discrete mathematics* 5 (1973), pp. 171–178.

- Richard P. Stanley. "A symmetric function generalization of the chromatic polynomial of a graph". In: *Advances in mathematics* 111 (1995), pp. 166–194.
- Thomas Zaslavsky. "Orientations of signed graphs". In: *European Journal of Combinatorics* 12 (1991), pp. 361–375.