
Annie Bete, Jeff Bonner, and Hannah Johnson
CSE 5524 Computer Vision
Final Project
Nov 26, 2022

Using Computer Vision Techniques to Analyze the
Correctness of a Runner’s Form

Introduction
A runner’s form can be analyzed by looking at their cadence (the number of steps taken in one
minute), change in their vertical direction (the displacement of their head over time), and
whether they are overstriding. We will film a runner running in a straight line using a stationary
camera, so that multiple of their strides are recorded. From there, we will use background
subtraction to determine the runner’s form each stride and analyze their overall form.

Data Collection
The data was collected using a Sony Alpha 7C camera on a tripod. The runner started running
before entering the frame so that they would be at full speed for the duration of the video. The
video was cropped so that there was approximately one second before the runner entered the
recorded scene and one second after the runner left the recorded scene, to ensure that there
were plenty of background frames that could be used for background subtraction.

All of the camera settings were manually set to ensure that the focus and aperture were
consistent for the entire video. The video was reshot, analyzed, and the settings were adjusted
until the video had a sufficient number of clear frames to use to analyze the runner’s form.

Methodology and Results
Data Setup
First, the video was loaded into MATLAB. The frames in the first and last seconds of the video
were extracted to be the background frames and the rest of the frames contained the runner’s
run. All frames were vertically cropped to remove extra background. For the run, every other
frame was sampled to be processed, resulting in 68 frames. For the background, every fifth
frame was sampled, resulting in 24 frames. Image compression was experimented with, but
cropping and sampling the frames decreased the runtime enough. It was good that an
alternative to image compression was found, since it affects how the motion between each
frame is portrayed.

Background Subtraction
The initial background subtraction, shown below, did a very good job of removing the
background, with the exception of the reflection/shadow on the floor directly beneath the runner.
The YIQ method of focusing more on intensity than on the colors was attempted to improve the
results. The initial background subtraction is shown below on the left and the YIQ method
shown below on the right. It didn’t remove a lot of the noise from the ground.

The method that worked the best to remove the noise on the floor was color normalization.
Median filtering using a 3x3 filter was used before the color normalization to improve the results.
An example frame is shown below.

Finally, additional noise was removed using a second 9x9 median filter after the background
subtraction and by removing all 8-connected components that had fewer than 500 pixels. An
example frame produced from the final background subtraction and noise removal is shown
below.

Motion Difference, MEI, and MHI
After background subtraction, the binary images were used to get the motion difference images.
The ith motion difference image was the absolute value of subtracting the ith frame from the (i-
1)th frame. Then it was thresholded and processed for noise removal. bwareaopen() was used
to remove regions fewer than 100 pixels with the 8 connected criteria. Then median filtering was
used to remove any possible scattered noise. The image processing steps in the motion
difference algorithm are not necessary in this application because the frames were already
clean from noise after the background subtraction steps, but they were performed just in case.
The results are shown below.

imagesc(motionDiff(:,:, 42))

imagesc(motionDiff(:,:, 12))

 imagesc(motionDiff(:,:, 58))

Next, all of the motion difference images were used to calculate an overall MEI for the entire
running period, shown below.

From visually inspecting the MEI, it is clear that the runner took a total of 5 strides in the 2
second interval. The MEI was used to calculate the floor by getting the max row value in the
MEI figure. The top most head point was calculated in a similar way by getting the min row
value. The background subtracted image with the floor and top head points is shown below.

Next, the MEI and floor row was used to find the frames that corresponded to steps. This proved
to be much harder than expected. When just the difference between bottom point and floor was
thresholded with a value picked by inspection were used to get the step frames, the result was
many frames that are close to each other in sections. For example, frames 22, 23, 26, 27, 28,
34, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 57, and 59. Thus it was necessary to
group the resulting frames into step groups and then take the minimum step frame of each
group. To group into step groups I used

[~,~,bins] = histcounts(stepFrameCand,numSteps);

which groups the candidate step frames into a specified number of bins. However, first the
number of bins, numSteps, needed to be calculated. numSteps was calculated by counting the
number of times the bottom of the figure in the frames crossed bottom 20th of the image. This
was achieved by calculating the difference between the bottom of each frame figure and the
floor and then counting sign changes and dividing the result by 2. The resulting step frames are
shown below.

Then the MHI for each step frame was computed based on the previous 5 motion difference
image frames before the step frame, shown below.

Finally the MHI for all frames was computed and a video with the head and floor lines was made
using implay(). An example of the MHI for frame 35, with the head and floor bars, is shown
below.

Similitude Moment Analysis

In addition to using the foot placement to determine a step frame, we also manually selected
one of the step frames to use as an “ideal” step reference frame for moment analysis. Frame 34
was chosen as this reference frame. The seven similitude moments were calculated for each of
the background subtracted frames in the video. The difference was calculated between these
moments and the moments of the reference frame. These values were sorted in ascending
order. To select the step frames, this list of frame numbers was traversed in ascending order,
and each frame was given a buffer of 7 frames on either side so no two frames within 7 frames
apart would be chosen (7 frames seemed to give the best results based on the test footage).
This buffer ensured that only one frame was chosen in a given “step” that could have multiple
frames of the step match up closely. A 10 frame buffer was applied to the start and end of the
footage so as to not select frames before the runner is clearly visible in the footage.

The cadence of the runner was calculated by taking the average frame difference between step
frames and dividing this value by the framerate of the video in order to figure out how many
seconds were in an average stride. This secondsPerStride value was then divided by 2 to get
the average stride time just for one foot, and then divided into 60 to get the average number of
strides per minute (SPM).

The selected frames based on manual selection, similitude moment analysis, and the foot
placement methods can be found below, in addition to their respective extrapolated cadence
calculations.

Stride Angle Analysis
The stride angle analysis was aided by a piece of blue tape, shown in the photo below. This
piece of tape was applied to the runner’s pants between the knee and the ankle to clearly show
the angle of the lower leg.

First, the piece of tape was extracted, using simple color thresholding. Since this tape was blue,
the color red=20, green=40, blue=90 was used for the base, with a tolerance of 20 on either
side of the value. The resulting extraction is shown below.

An example of an initial tape extraction is the top left image below. To improve the selection and
make it easier to get a line from, the region was first cleaned using a median filter,
morphological cleaning, and morphological filling. The resulting image is the top right image
below. Next, morphological thinning, which removes the boundary pixels, was repeatedly
applied until only a line of pixels remained, as shown in the bottom left image below. Finally, the
middle region was extracted, since the top and bottom edges were not always smooth and
affected the line. This is the bottom right image shown below.

Next, the vector corresponding to this line is created by taking the top coordinates and the
bottom coordinates and connecting them. An example vector is shown below.

In this case, the floor is assumed to be a horizontal vector. Two horizontal vectors are shown on
the drawing below. You can see how the angle that the leg is at when it contacts the floor, the
angle between u’ and v in the drawing below, is the same angle, by vertical angles, as a u and
v. Angle u will be used in the calculation, for simplicity, since it has the same origin as v. The
angle between two vectors, u and v, can be calculated by 𝐴 = 𝑐𝑜𝑠!"((𝑢 ⋅ 𝑣)/(,|𝑢|,,|𝑣|,)), in
radians. Multiplying by 180/pi gives the angle in degrees. The user can enter an angle that
would be the cutoff for when a stride starts to overstride. If the angle was 45°, then any angle
less than 45° would be overstriding, and any angle greater than 45° would be a good stride.

Discussion
The background subtraction worked very well for this purpose. The top of the head and the
lower leg/feet all needed to be clear, but the rest of the body didn’t need to be perfect, since it
wasn’t used in the later algorithms. This means that some things, like the graphic on the
runner’s shirt being taken out during background subtraction, didn’t affect the outcome of the
experiments.

The MEI was very useful in visually determining the number of steps the runner took, and the
pattern of the runner's gait was very clear. However there was a problem in determining step
frames. The issue was that the step frame algorithm can and does pick up on both the end and
beginning of a step. In order to fix this, a step frame must be better defined. If we define a step
as when the non weight bearing leg is fully bent and raised, then our step frame algorithm had a
⅗ success rate. To improve our results, further computer vision techniques like moment
similitude or covariance tracking techniques would need to be applied. We decided to explore
moment similitude.

The MHI helps show a continuous representation of the runner's movement just before each
step. By looking at these images, the runner’s form can be analyzed. In addition, the video that
was created out of the MHI’s can give further insight on the runner’s form. The floor and head
line are visual anchors for assessing the runner. Comparing the runner's head with the head line
shows the fairly regular periodic behavior of the runner's vertical motion.

u

u’ v

The similitude moment analysis for the step frames proved to be very accurate after some
tuning of the frame buffer to select only one frame per step, as can be seen by comparing the
cadences of each method of step frame extraction. After this fine tuning, the calculated cadence
of the similitude moments had a smallder error to the manually selected cadence than the foot
placement method. However, this analysis starts with a provided background subtracted step
frame, which may not be available in all cases. Combining these two methods to hone in the
step frame even closer could serve to be even more accurate than each of the individual efforts
taken.

For the overstriding analysis, The method of using the tape was straightforward, but not perfect.
In some cases, the jagged top and bottom edges, along with holes in the tape extraction that
weren’t fixed in cleaning, created odd angles in the final line. An example of this is shown below,
where the line splits towards the bottom left side.

The overstriding analysis also depends on the correct step frames being selected. It is very
important that the frames being entered into it are the very first frames where the foot makes
contact with the floor, since the angle of the leg changes so much while the foot is on the
ground.

In the future, we could also check for correct body weight distribution and form as well as
calculate the amount of time in contact with the ground. Further analysis into exactly how the
foot is contacting the ground would improve the step detection, and thus the overstriding
analysis, along with giving more information about the runner’s form.

Another way to improve this analysis would be to use different videos shot in different settings.
Due to time constraints, this is a proof of concept, but further development with more testing
would make this into a robust analysis.

Breakdown of work
Annie recorded the data, created helper functions to transition between 4D data and its color
channels, experimented with image compression, performed image preprocessing, completed
the background subtraction, and designed the stride analysis algorithm. Hannah computed the
total MEI, determined the top most head level, the floor, and the step frames, and computed the

MHI’s. Jeff calculated cadence based on the extrapolated average stride duration and used
similitude moments to find an alternative set of step frames to compare against the step frame
extraction method Hannah worked on.

Code
main.m
% beginning of Annie's additions (part 1)
%% load video and split it into background and running clips
file = 'input/test1_cropped.mp4';
vidObj = VideoReader(file);
beginningBackground = double(read(vidObj,[1 floor(vidObj.FrameRate)]));
run = double(read(vidObj,[floor(vidObj.FrameRate) floor(vidObj.NumFrames -
vidObj.FrameRate)]));
endingBackground = double(read(vidObj,[floor(vidObj.NumFrames - vidObj.FrameRate)
Inf]));
background = cat(4,beginningBackground,endingBackground);
run = run(400:1000, :, :, 1:2:end);
background = background(400:1000, :, :, 1:5:end);
%% Compress image
% [compressedBackground1, compressedBackground2, compressedBackground3] =
image_compression(background);
% [compressedRun1, compressedRun2, compressedRun3] = image_compression(run);
%% Show results of background subtraction with noise removal
t=6;
sub = background_subtraction(background, run, t);
med = medfilt3(sub, [9 9 1]);
med = bwareaopen(med,500,8);
implay(med)
% end of Annie's additions (part 1)
%beginning of hannah additions
%% Getting Mei over all frames and calculating ground and top most head point
%Calculating Motion Difference frames
motionDiff= motionDifference(med);
% getting the Mei and displaying it
mei=MEI(motionDiff); % note the Mei is already normalized by how its computed
imagesc(mei);
axis('image'); % set the ratio so image is not stretched out
colormap("gray");
pause;
%finding the floor and the topmost head point
[nonzeroRows,nonzeroCol]=find(mei==1);
Floor=max(nonzeroRows);
tophead=min(nonzeroRows);
%displaying the floor and topmost head point
floorAndHead=med;
floorAndHead(Floor,:,:)=1;
floorAndHead(tophead,:,:)=1;
imagesc(floorAndHead(:,:,35));
axis('image'); % set the ratio so image is not stretched out
colormap("gray");
pause;

implay(floorAndHead);
%% finding frames which correspond to steps
stepFrames=findSteps(med,Floor);
[~,numSteps]=size(stepFrames);
%display step frames
for i=1:numSteps
 imagesc(med(:,:,stepFrames(i)));
 axis('image'); % set the ratio so image is not stretched out
 colormap("gray");
 pause;
end
%% Get step frames with Moments to compare accuracy to foot placement frames
sampleStepFrame = med(:,:,33);
Nsample = similitudeMoments(sampleStepFrame);
momentDifferences = [];
for i=1:nFrames
 Nframe = similitudeMoments(med(:,:,i));
 d = Nsample - Nframe;
 momentDifferences(end+1) = sqrt(d * d');
end
%sort differences, and get the sorted original indexes to order the frames
[sortedMomentDifferences, sortedMomentStepFrames] = sort(momentDifferences,'ascend');
%get rid of frames if better frame exists within 3 frames on either side
keyMomentStepFrames = [sortedMomentStepFrames(1)];
for i=1:length(sortedMomentStepFrames)
 goodframe=1;
 for j=1:length(keyMomentStepFrames)
 if(abs(sortedMomentStepFrames(i)-keyMomentStepFrames(j)) < 8 ...
 || sortedMomentStepFrames(i) < 10 ...
 || sortedMomentStepFrames(i) > nFrames-10)
 goodframe=0;
 break;
 end
 end
 if(goodframe)
 keyMomentStepFrames(end+1) = sortedMomentStepFrames(i);
 end
end
sortedKeyMomentStepFrames = sort(keyMomentStepFrames);
disp("Key step frames (manually selected)")
manualSteps =[12,23,33,43,54];
disp(manualSteps)
% fprintf("SSE for foot position technique: %f\n", sum((manualSteps - stepFrames) .^
2) / length(manualSteps))
disp("Key step frames using foot position")
disp(stepFrames)
% fprintf("SSE for similitude moments technique: %f\n", sum((manualSteps -
sortedKeyMomentStepFrames) .^ 2) / length(manualSteps))

disp("Key step frames using simitude moments")
disp(sortedKeyMomentStepFrames)
%display step frames
for i=1:length(sortedKeyMomentStepFrames)
 imagesc(med(:,:,sortedKeyMomentStepFrames(i)));
 axis('image'); % set the ratio so image is not stretched out
 colormap("gray");
 pause;
end
%% Get cadence based on average frame difference (moments) and framerate
vidObj = VideoReader(file);
avgStrideFrameDifferenceManual = (manualSteps(end) - manualSteps(1)) /
double(numSteps-1);
secondsPerStride = avgStrideFrameDifferenceManual / vidObj.FrameRate;
cadenceFoot = 60.0 / secondsPerStride / 2; % halved because measuring only one leg
disp("Cadence using manual selection (SPM)")
disp(cadenceFoot)
avgStrideFrameDifferenceFoot = (stepFrames(end) - stepFrames(1)) / double(numSteps-
1);
secondsPerStride = avgStrideFrameDifferenceFoot / vidObj.FrameRate;
cadenceFoot = 60.0 / secondsPerStride / 2; % halved because measuring only one leg
disp("Cadence using foot position (SPM)")
disp(cadenceFoot)
avgStrideFrameDifferenceMoment = (sortedKeyMomentStepFrames(end) -
sortedKeyMomentStepFrames(1)) / double(numSteps-1);
secondsPerStride = avgStrideFrameDifferenceMoment / vidObj.FrameRate;
cadenceMoment = 60.0 / secondsPerStride / 2; % halved because measuring only one leg
disp("Cadence using similitude moments (SPM)")
disp(cadenceMoment)
%% Get Mhi for each step frame
[nRow,nCol,nFrames]=size(med);
mhi=zeros(nRow,nCol,numSteps);
for i=1:numSteps
 delta=5; %number of frames before step that are included in mhi
 %compute mhi from all motion difference images upto
 % and including ith step
 mhi(:,:,i)=MHI(motionDiff(:,:,1:stepFrames(i)), delta);
end
%display mhi images
for i=1:numSteps
 imagesc(mhi(:,:,i));
 axis('image'); % set the ratio so image is not stretched out
 colormap("gray");
 pause;
end
%% Mhi for all frames
[nRow,nCol,nFrames]=size(med);
mhi=zeros(nRow,nCol,nFrames);

for i=1:nFrames
 delta=5; %number of frames before step that are included in mhi
 %compute mhi from all motion difference images upto
 % and including ith step
 mhi(:,:,i)=MHI(motionDiff(:,:,1:i), delta);
end
%% display mhi images
floorAndHeadMHI=mhi;
floorAndHeadMHI(Floor,:,:)=1;
floorAndHeadMHI(top head,:,:)=1;
imagesc(floorAndHeadMHI(:,:,35));
axis('image'); % set the ratio so image is not stretched out
colormap("gray");
pause;
implay(floorAndHeadMHI);
%end of hannah additions
% beginning of Annie's additions (part 2)
%% stride analysis
% get steps (manually)
stepFramesToTest = 20:30;
stepsManualBackgroundSub = med(:,:,stepFramesToTest);
stepsManualColorImage = run(:,:,:,stepFramesToTest);
[red, green, blue] = FourDtoColors(stepsManualColorImage);
red = red.*stepsManualBackgroundSub;
green = green.*stepsManualBackgroundSub;
blue = blue.*stepsManualBackgroundSub;
color_backgroundSubtraction = colorsTo4D(red, green, blue);
for i=1:length(stepFramesToTest)
 line = extractTape(color_backgroundSubtraction(:,:,:,i), 20, 40, 90, 25);
 if sum(sum(line))~=0
 imagesc(line);
 axis('image'); % set the ratio so image is not stretched out
 colormap("gray");
 overstriding = strideAnalysis(line, 45);
 end
 pause
end
% for each example frame, save the extracted line and print stride result
% for i=1:length(stepFramesToTest)
% line = extractTape(color_backgroundSubtraction(:,:,:,i), 20, 40, 90, 25);
% if sum(sum(line))~=0
% overstriding = strideAnalysis(line, 45);
% imagesc(line);
% axis('image'); % set the ratio so image is not stretched out
% colormap("gray");
% saveas(gca, sprintf('output/strideStep%d.png', stepFramesToTest(i)))
% sprintf("Frame %d, Overstriding: %d (False=0, True=1)",
stepFramesToTest(i), overstriding)

% end
% end
%% Play colored background subtracted video with white background
[r, c, f] = size(med);
med4D = zeros(r,c,3,f);
med4D(:,:,1,:) = med;
med4D(:,:,2,:) = med;
med4D(:,:,3,:) = med;
[red, green, blue] = FourDtoColors(run);
[~,~,~,d] = size(run);
red = red.*med;
green = green.*med;
blue = blue.*med;
colorSum = red + green+ blue;
red(colorSum==0) = 255;
green(colorSum==0) = 255;
blue(colorSum==0) = 255;
color_backgroundSubtraction = colorsTo4D(red, green, blue);
implay(color_backgroundSubtraction./255)
%% Plays the background subtracted video with a red line representing where the tape
was in each frame.
tape = repmat(double(med),[1 1 1 3]);
tape = permute(tape, [1 2 4 3]);
[~,~,~,d] = size(tape);
[red, green, blue] = FourDtoColors(run);
backgroundSub = tape(:,:,1,:);
[r, c, ~, depth] = size(backgroundSub);
backgroundSub=reshape(backgroundSub, [r, c, depth]);
red = red.*backgroundSub;
green = green.*backgroundSub;
blue = blue.*backgroundSub;
color_backgroundSubtraction = colorsTo4D(red, green, blue);
for i=1:d
 line = extractTape(color_backgroundSubtraction(:,:,:,i), 20, 40, 90, 20);
 if sum(sum(line))~=0
 overstriding = strideAnalysis(line, 45);
 [r,c] = find(line==1);
 if overstriding ==1
 sprintf("Frame %d, Overstriding: %d (False=0, True=1)", i, overstriding)
 end
 for j=1:length(r)
 tape(r(j)-2:r(j)+2,c(j)-2:c(j)+2,1,i) = 1;
 tape(r(j)-2:r(j)+2,c(j)-2:c(j)+2,2,i) = 0;
 tape(r(j)-2:r(j)+2,c(j)-2:c(j)+2,3,i) = 0;
 end
 end
end
implay(tape);

% end of Annie's additions (part 2)

background_subtraction.m
function [subtracted_image] = background_subtraction(background, run, threshold)
% background_subtraction for a colored video. Applies median filter and
% color normalization to improve results.
% inputs: foreground video frames, background video frames, threshold for
% background subtraction
% output: bitmap
 % get separate color channels for the background frames
 [h, w, ~, d] = size(background);
 background_red = reshape(background(:,:,1,:), [h,w,d]);
 background_green = reshape(background(:,:,2,:), [h,w,d]);
 background_blue = reshape(background(:,:,3,:), [h,w,d]);

 % median filtering for the background frames
 background_red = medfilt3(background_red, [3 3 1]);
 background_green = medfilt3(background_green, [3 3 1]);
 background_blue = medfilt3(background_blue, [3 3 1]);
 % normalization of each background color channel
 b_red = background_red./(background_red+background_green+background_blue);
 b_green = background_green./(background_red+background_green+background_blue);
 b_blue = background_blue./(background_red+background_green+background_blue);
 % get separate color channels for the foreground frames
 [h, w, ~, d] = size(run);
 f_red = reshape(run(:,:,1,:), [h,w,d]);
 f_green = reshape(run(:,:,2,:), [h,w,d]);
 f_blue = reshape(run(:,:,3,:), [h,w,d]);
 % median filtering for the foreground frames
 f_red = medfilt3(f_red, [3 3 1]);
 f_green = medfilt3(f_green, [3 3 1]);
 f_blue = medfilt3(f_blue, [3 3 1]);
 % normalization of each foreground color channel
 fg_red = f_red./(f_red+f_green+f_blue);
 fg_green = f_green./(f_red+f_green+f_blue);
 fg_blue = f_blue./(f_red+f_green+f_blue);
 % get mean and standard deviation for each background color channel
 sigma_red = std(b_red, 0, 3);
 u_red = mean(b_red, 3);
 sigma_green = std(b_green, 0, 3);
 u_green = mean(b_green, 3);
 sigma_blue = std(b_blue, 0, 3);
 u_blue = mean(b_blue, 3);
 % perform background subtraction
 red_subtracted = ((fg_red - u_red).^2./(sigma_red.^2)) > threshold^2;
 green_subtracted = ((fg_green - u_green).^2./(sigma_green.^2)) > threshold^2;
 blue_subtracted = ((fg_blue - u_blue).^2./(sigma_blue.^2)) > threshold^2;
 % OR all of the color channels to get the logical bitmap
 subtracted_image=red_subtracted|green_subtracted|blue_subtracted;
end

colorsTo4D.m
function [FourD] = colorsTo4D(red,green, blue)
% Given three color channels, colorsTo4D arranges the colors in one array
% such that the dimensions are (width, height, channels, # frames).
 FourD = cat(4, red, green, blue);
 FourD = permute(FourD, [1 2 4 3]);
end

extractTape.m
function [tape] = extractTape(image, r, g, b, threshold)
% extractTape extracts the (r,g,b) +- threshold values from an image and
% returns the bitmap that corresponds to a line representing the angle of
% the tape.
 % get separate color channels
 [red, green, blue] = FourDtoColors(image);

 % extract the colors of the tape, use median filtering, and clean/fill the
resulting shape.
 tape = (red>=r-threshold) & (red<=r+threshold) & (green>=g-threshold) &
(green<=g+threshold) & (blue>=b-threshold) & (blue<=b+threshold);
 tape = medfilt2(tape);
 tape = bwmorph(tape,'clean');
 tape = bwmorph(tape,'fill');

 % keep reducing the tape shape until it is just a line
 line = bwmorph(tape, 'thin');

 while ~isequal(line, tape)
 tape = line;
 line = bwmorph(tape, 'thin');
 end
 tape = line;

 % extract the middle section of the line, since the top and bottom edges
 % sometimes aren't perfect.
 [rows, ~] = find(tape==max(max(tape)));
 maxRow=max(rows);
 minRow = min(rows);
 tape(minRow:minRow+floor(.2*(maxRow-minRow)), :) = 0;
 tape(maxRow-floor(.2*(maxRow-minRow)):maxRow, :) = 0;
end

findSteps.m

function stepFrames= findSteps(images, floorRow)
 %returns an array with the frames that correspond to a step by finding
 %the ones that have bottom closest to floor
 [nrows,~,numIm]=size(images);
 bottoms(1:numIm)=0;
 frames=1:numIm;
 %get bottoms for all frames- if frame is empty sets bottom to 0
 for i=1:numIm
 if(sum(images(:,:,i),"all")==0)
 bottoms(i)=0;
 else
 [nonzeroRows,~]=find(images(:,:,i)==1);
 bottoms(i)=max(nonzeroRows);
 end
 end
 %get number of steps by counting number of times bottom crosses
 %bottom 20th of the picture, do this by counting sign changes
 % (zero is counted as a sign change)
 bottomSec=floor(nrows*19/20);
 diff=bottomSec-bottoms;
 count=0;
 for i=1:numIm-1
 if sign(diff(i))*sign(diff(i+1)) ~= 1
 count=count+1;
 end
 end
 numSteps=floor(count/2);
 %difference between bottom and floor
 diff=abs(floorRow-bottoms);
 %threshholding
 threshhold=10 ;
 stepFrameCand=frames(diff<=threshhold);
 %seperate stepframe candidate into bins as multiple frames in same
 %section of video might be step frames
 [~,~,bins] = histcounts(stepFrameCand,numSteps);
 stepFrames(1:numSteps)=0;
 for i=1:numSteps
 stepFrames(i)=floor(median(stepFrameCand(bins==i)));
 end

end
%[N,edges] = histcounts(X) partitions the X values into bins, and returns
% the count in each bin, as well as the bin edges. The histcounts function
% uses an automatic binning algorithm that returns bins with a uniform
% width, chosen to cover the range of elements in X and reveal the
% underlying shape of the distribution.

%[N,edges,bin] = histcounts(___) also returns an index array, bin, using
% any of the previous syntaxes. bin is an array of the same size as X
% whose elements are the bin indices for the corresponding elements in X.
% The number of elements in the kth bin is nnz(bin==k), which is the same
% as N(k).

FourDtoColors.m
function [red, green, blue] = FourDtoColors(image)
% Given a 4D matrix of images in the form (width, height, colors, frames),
% it extracts the color channels red, green, blue to be in the form (width,
% height, frame).
 [h, w, ~, d] = size(image);
 red = reshape(image(:,:,1,:), [h,w,d]);
 green = reshape(image(:,:,2,:), [h,w,d]);
 blue = reshape(image(:,:,3,:), [h,w,d]);
end

MEI.m

function mei= MEI(diffImages)
 %returns an 2d matrix with the area of motion turned on with value 1
 %and the rest of the pixels turned off
 % mathematically we are unioning over all difference images, so if a
 % pixel is turned on in any image differences then it is turned on for
 % the mei
 % We can fake this by adding element wise and then thresholding
 [~, ~, numIm]=size(diffImages);
 mei=diffImages(:,:,1);
 for i=2:numIm
 mei=mei+diffImages(:,:,i);
 end
 %thresholding
 mei=mei>0;
end

MHI.m

function mhi= MHI(diffImages, delta)
 %returns an 2d matrix with a gradient motion where white represents
 %most recent motion and black represents no motion
 %delta is how many frames before matters
 [~, ~, numIm]=size(diffImages);
 diffImages=double(diffImages);
 mhi=double(diffImages(:,:,1));
 minFrameNum=2;
 for i=minFrameNum:numIm
 [rowNonzero, colNonzero]=find(diffImages(:,:,i));
 for j= 1:size(rowNonzero)
 mhi(rowNonzero(j),colNonzero(j))=i;
 end
 [rowTooOld, colTooOld]=find(mhi<i-delta);
 for j= 1:size(rowTooOld)
 mhi(rowTooOld(j),colTooOld(j))=0;
 end
 end
 %normalize the MHI
 mhi=max(0,(double(mhi-(numIm-delta)))/double(delta));
end

motionDifference.m
function motionDiff= motionDifference(images)
 %returns an 3d matrix with the difference between the i and i-1 image
 % at position 1 there is a zero matrix
 %at postion 2 there is the difference between the 1st and 2nd image
 motionDiff(:,:,1)=zeros(size(images(:,:,1)));
 [~,~,numIm]=size(images);
 for i=2:numIm
 motionDiff(:,:,i)=abs(images(:,:,i-1)-images(:,:,i));
 end
 %thresholding
 threshhold=0.15 ;
 motionDiff= motionDiff>=threshhold;
 %performing noise removal
 for i=2:numIm
 % Removes regions fewer than 100 pixels (8-connected)
 motionDiff(:,:,i)=bwareaopen(motionDiff(:,:,i), 100, 8);
 motionDiff(:,:,i)=medfilt2(motionDiff(:,:,i));
 end

end

strideAnalysis.m
function [overstriding] = strideAnalysis(line, angle)
% strideAnalysis is given a line (corresponding to the tape) and a
% threshold angle of when to count an angle as overstriding. Outputs 0 for
% not overstriding and 1 for overstriding.
 % get coordinates from the input line. Top left and bottom right
 % corners.
 [r, c] = find(line==1);
 coords = [r,c];
 lineStart = coords(1,:);
 lineEnd = coords(end,:);

 % get vectors u and v. Currently, the ground is assumed to be
 % horizontal
 u = [lineEnd(2)-lineStart(2), (lineEnd(1)-lineStart(1))];
 v=[20,0];

 % hold on
 % plot(lineStart(2),lineStart(1), 'or')
 % plot(lineEnd(2),lineEnd(1), 'or')
 % quiver(lineStart(2),lineStart(1),lineEnd(2)-lineStart(2),lineEnd(1)-
lineStart(1))
 % get angle between u and v
 A = acos(dot(u,v)/(norm(u)*norm(v)))*180/pi;

 % determine if overstriding based on the angle
 if A <= angle
 overstriding = 1;
 else
 overstriding = 0;
 end
end

